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Linked-Cluster Expansion of the Ising Model
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The linked-cluster expansion technique for the high-temperature expansion of
spin modes is reviewed. A new algorithm for the computation of three-point and
higher Green's functions is presented. Series are computed for all components of
two-point Green's functions for a generalized 3D Ising model, to 25th order on
the bcc lattice and to 23rd order on the sc lattice. Series for zero-momentum
four-, six-, and eight-point functions are computed to 21st, 19th, and 17th order
respectively on the bcc lattice.

KEY WORDS: High-temperature expansion; Ising model.

1. INTRODUCTION

The high-temperature (strong-coupling) series expansion is one of the most
successful tools for the study of physical systems near a critical point.

High-temperature series are analytic; the radius of convergence is
usually quite large, often reaching the boundary of the high-temperature
phase. This property allows the application of powerful techniques of
resummation and analytical continuation, (1) which can yield very precise
and reliable results, provided that long series are available. It is therefore
worthwhile to push the computation of high-temperature series as far as
our algorithms and computers allow.

The most successful technique for the computation of high-tempera-
ture series of 3D spin models is the linked-cluster expansion (LCE), which
is well suited for the fully computerized approach required to reach very
high orders of the expansion.

A review of the most significant series computations for 3D O(N )-
symmetric spin models up to 1997 can be found in ref. 2. Particularly
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remarkable is the computation of 21st-order series of the two-point function
for the 3D Ising model (N=1) on the bcc lattice by Nickel, (3) generalized to
arbitrary potential (cf. Eq. (1)) by Nickel and Rehr, (4) using the edge-renor-
malized LCE; they had not been surpassed until the present work.

Among more recent developments, we mention the works by Butera
and Comi, who computed the two-point function to 21st order and the
four-point function to 17th order, for sigma models of arbitrary N on
the sc and bcc lattices, (2, 5) and q-point functions for q>4 to 17th order for
the Ising model on the sc lattice.(6) A collaboration including the author
of the present work computed series for arbitrary potential: two-point
functions are computed to 20th order, four-point functions to 18th order,
six-point functions to 17th order etc., for N=1(7) and N=2.(8) All these
works use the vertex-renormalized LCE.

The techniques used in the present paper are similar to those of refs. 3
and 4; we benefitted of a great improvement in computers, but we also
worked on the optimization of data representation and adopted new algo-
rithms and tricks (the most notable ones are reported in Section 8). The
computation of the q-point functions for q>2 uses a new algorithm.
Compared to refs. 2, 5�8, the main source of improvement is the adoption
of the edge-renormalized LCE.

Several detailed discussions of the LCE appeared in the literature.
Wortis' review(9) covers most of the basic topics, and provides many graph-
ical rules fit for algorithmic implementation. Nickel and Rehr illustrate
their remarkable computation for the 3D Ising model on the bcc lattice,
and present several clever algorithms which we found very useful.(4)

Lu� scher and Weisz, describing their application of the LCE to lattice field
theory, also provide several important implementation hints.(10)

Unfortunately, the notation found in the literature is by no means
uniform. Therefore we will review the relevant aspects of the LCE, which
can be found in ref. 9, not only to make our paper more self-contained, but
also to explain notations carefully and to remark the correspondence with
refs. 9, 4, and 10. We will follow the notations of ref. 4 whenever possible.

The paper is organized as follows:
Section 2 introduces the relevant graph theory concepts and definitions.

Section 3 presents the generalized Ising model we focus on. Sections 4�6
review the LCE, with special focus on the two-point Green's functions.
Section 7 describes our algorithm for the computation of three-point and
higher Green's functions. Section 8 is devoted to programming details.
Section 9 displays a (small) selection of the series generated.

Forthcoming papers will be devoted to the analysis of the series, using
the techniques presented in ref. 7, and to the generation and analysis of the
series for XY systems.
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We will not give proofs of our formulae. The only nontrivial step in
the proofs of Sections 5�7 is to show that the symmetry factors compensate
exactly the different number of contributions that may appear on the two
sides of the equations; it is typically a straightforward, if tedious, exercise
in combinatorics. The proofs of Sections 4�6 are given or sketched in ref. 9.
The proofs of Section 7 are especially easy, since the symmetry factor of a
1-irreducible tree graph is always 1.

2. GRAPHOLOGY

In this section we introduce a number of graph theory concepts rele-
vant for the LCE. We refer the reader to ref. 11 for a comprehensive intro-
duction to the subject.

A graph is a set of vertices and edges (also named links or bonds in the
literature). Each edge l is incident with two distinct vertices, its extrema (we
do not allow the extrema to coincide); the set of extrema will be denoted
by �l; we write �l=[i(l ), f (l )]; the choice of an ``initial'' and a ``final'' vertex
is arbitrary. Two vertices are adjacent if they are the extrema of the same
edge. We will denote the number of vertices and edges of a graph by v and
e respectively. We also consider arcs or oriented edges, incident out of the
initial vertex i(l ) into the final vertex f (l ).

The valence n(i ) of a vertex i is the number of edges incident with i.
An r-rooted graph is a graph with v vertices, v�r: r roots or external

vertices and v&r internal vertices. We will assign the indices 1,..., r to the
roots and the indices r+1,..., v to the internal vertices. In the drawings,
roots will be denoted by open dots and internal vertices by filled dots.

Two r-rooted graphs are isomorphic if there exists a one-to-one corre-
spondence ? of their internal vertices and edges such that the incidence rela-
tions are preserved, i.e., �(?(l ))=[?(i(l )), ?( f (l ))] (?(i )=i for the roots).
From now on, we will identify isomorphic graph, and silently assume that
all sets of graphs we define contain only non-isomorphic graphs.

The symmetry factor S(G) of an r-rooted graph G is the number of
isomorphisms of G into itself, i.e., the number of of permutations of internal
vertices and edges preserving the incidence relations.

We will also consider p-ordered r-rooted graphs, p�r, i.e., the classes
of rooted graphs isomorphic up to permutations of r& p roots. We will
assign indices 1,..., p to the fixed roots and indices p+1,..., r to the roots
which can be permuted. The symmetry factor S(G) is defined as the num-
ber of isomorphisms of G into itself, including permutation of the roots
p+1,..., r. The symmetry factor divided by (r& p)! is called the modified
symmetry factor SE (G) (cf. ref. 10); it need not be an integer. The r-rooted
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graphs defined above are ordered (r-ordered); unless otherwise specified, we
will assume that graphs are ordered. 0-ordered graphs are unordered.

We will also discuss ( p-ordered) r-rooted graphs whose edges and�or
vertices are assigned a label; let us consider e.g., the case of an edge label
a(l ) and vertex label b(i ). Two labelled graphs (G, a, b) and (G$, a$, b$) are
equivalent (isomorphic) if there exists an isomorphism of G into G$ such
that a is mapped into a$ and b is mapped into b$. The symmetry factor
S(G, a, b) is the number of isomorphisms of (G, a, b) into itself.

A pair of vertices i and j is connected if there exists a sequence of
vertices k1 ,..., kn , with k1=i and kn= j, and a sequence of edges l1 ,..., ln&1

such that �la=[ka , ka+1], a=1,..., n&1. A graph is connected if every pair
of its vertices is connected. In the following, unless otherwise noted, we will
assume that every graph is connected.

A sequence of distinct vertices k1 ,..., kn and distinct edges l1 ,..., ln is
called a loop of length n if �la=[ka , ka+1], a=1,..., n&1, and �ln=
[kn , k1]. The number of independent loops (also known as cyclomatic
number) of a connected graph is e&v+1.

A connected graph is called a tree graph if it contains no loops. A tree
graph has v&1 edges.

3. THE MODEL

We wish to compute the high-temperature (HT) expansion of the
q-point functions of a generalized Ising model on a D-dimensional Bravais
lattice 4; notice that Bravais lattices enjoy inversion symmetry at each
lattice site. The model is defined by the generating functional

exp(W[h])=
1
Z

`
i _| d,i f (,i ) exp(h i, i )& exp \K :

(ij)

,i ,j+ (1)

where ,i is a scalar field, f is an even non-negative function or distribution
decreasing faster than exp(&,2) as , � �, normalized by the condition

| d, f (,)=1

K=;J, the sum runs over all pairs of nearest neighbours, and the nor-
malization Z is fixed by requiring W[0]=0.

The connected q-point function (denoted by M in ref. 9) at zero
magnetic field is defined by

Gq(xi1
,..., x iq

)#(,i1
} } } ,iq

) con |h=0=
�qW[h]

�h i1
} } } �h iq

} h=0

(2)
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where xi#(x1(i ),..., xD(i )) is the coordinate vector of the lattice site i.
Gq is invariant under the lattice symmetry group, including (discrete) trans-
lations, and under permutation of its arguments; it is customary to write
G2(xi1

, x i2
) in the form G2(xi1

&xi2
). We will apply the LCE to the com-

putation of Gq .

4. UNRENORMALIZED EXPANSION

Let us parametrize the potential f in terms of the bare vertices +0(2n),
defined by the generating function

exp _:
n

+0(2n)
(2n)!

h2n&=| d, f (,) exp(h,) (3)

These quantities are named bare semi-invariants and denoted by M 0
n in

ref. 9; they are named cumulant moments and denoted by +2n in ref. 4;
+0(2n)=(2n&1)!! m# con

2n in the notations of ref. 10. Without loss of generality,
we can rescale , and K to fix +0(2)=1.

For a generic r-rooted graph G, we define the bare external vertex factor

V (e)
0 (n1 ,..., nr ; G)= `

r

i=1

+0(n(i )+ni ) (4)

the bare internal vertex factor

V (i )
0 (G)= `

v

i=r+1

+0(n(i )) (5)

and the bare edge factor

L0(x1 ,..., xv ; G)= `
e

l=1

[K%(x i(l )&xf (l ))] (6)

where %(x)=$(&x&&1) and &x& is the lattice distance between 0 and x.
It is convenient to focus on the contributions of r-rooted graphs to

q-point functions. To this purpose we introduce the auxiliary r-point func-
tions X, whose unrenormalized LCE is

Xr(x1 ,..., xr ; n1 ,..., nr)

= :
G # I(r, 0)

:
xr+1 ,..., xv

V (e)
0 (n1 ,..., nr ; G) V (i )

0 (G) L0(x1 ,..., xv ; G)
S(G)

(7)

where I(r, 0) is the set of all r-rooted connected graphs.
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X is invariant under simultaneous permutation of coordinates and
valences:

Xr(x1 ,..., xr ; n1 ,..., nr)=Xr(x?(1) ,..., x?(r) ; n?(1) ,..., n?(r))

but not over independent permutation of coordinates and valences.
Furthermore, X is invariant over the lattice symmetry group, e.g., it is
translation-invariant:

Xr(x1 ,..., xr ; n1 ,..., nr)=Xr(x1+x,..., xr+x; n1 ,..., nr)

X1(x; n) is independent of x, and it will be denoted by X1(n); it will also
be denoted by +(n) in its role of renormalized vertex. X2(x1 , x2 ; n1 , n2)
only depends on the difference x2&x1 , and it will be denoted by X2(x2&x1 ;
n1 , n2). Since, by invariance under space inversion, X2(x; n1 , n2)=X2(&x;
n1 , n2), we also have X2(x; n1 , n2)=X2(x; n2 , n1).

The sum over the location of internal vertices of the % functions is by
definition the (free) lattice embedding number of G with fixed roots:

:
xr+1,..., xv

`
e

l=1

%(xi(l )&xf (l ))=E(x1 ,..., xr ; G) (8)

Therefore

Xr(x1 ,..., xr ; n1 ,..., nr)= :
G # I(r, 0)

V (e)
0 (n1 ,..., nr ; G) V (i )

0 (G) K e(G)E(x1 ,..., xq ; G)
S(G)

(9)

Finally, the q-point functions are computed as:

Gq(x1 ,..., xq)= :
partitions

Xr(xi11
,..., xir 1

; u1 ,..., ur) `
r

l=1

$ul
(xil 1

,..., x ilul
) (10)

where the q-point delta function is

$1(x1)=1, $2(x1 , x2)=$(x1&x2),..., $q(x1 ,..., xq)= `
q

l=2

$(x1&xl)

and [[i11 ,..., i1u1
],..., [ir1 ,..., irur

]] is a generic partition of [1,..., q] into r
sets of size u1 ,..., ur . We will call a root bearing a factor of $u a u th order
root.
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The two-point function is simply

G2(x)=X2(x; 1, 1)+$(x) X1(2)

5. VERTEX-RENORMALIZED EXPANSION

The graph G"i is obtained by deleting from G the vertex i, i.e., by
removing i and all edges incident with i. A vertex i of a rooted graph G is
called an articulation point if there exist vertices of G"i not connected to a
root. A rooted graph is called 1-irreducible if it does not contain any
articulation point.

Any r-rooted (r>1) connected graph G can be decomposed in a unique
way into a 1-irreducible r-rooted 1-skeleton S and a 1-rooted 1-decoration
for each vertex; G is reconstructed by decorating each vertex, identifying
the root of its decoration with the vertex; an example is presented in Fig. 1.

Since the only 1-irreducible 1-rooted graph is the single-vertex graph,
we use a different definition for 1-rooted graphs. A 1-rooted graph is called
a 1-skeleton if it has no articulation points except the root. Any 1-rooted
connected graph G can be decomposed in a unique way into a 1-rooted
1-skeleton S and a 1-rooted 1-decoration for each vertex except the root,
which is left undecorated.

A 1-rooted connected graph is called a 1-insertion if G"1 is connected.
The LCE can be reorganized by summing together all contributions

from graphs having the same 1-skeleton, incorporating 1-decorations into
renormalized vertices +(n)=X1(n) (named semi-invariants and denoted by
Mn in ref. 9; +(n)=(n&1)!! mn in the notations of ref. 10). The unrenor-
malized LCE of +(n) is given by Eq. (7).

Fig. 1. Example of decomposition of a graph into its 1-skeleton and 1-decorations. Open
dots and roots, filled dots are internal vertices.
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The r-point function can be computed restricting the sum in Eq. (7) or
(9) to the (much smaller) set I(r, 1) of 1-irreducible r-rooted graphs:

Xr(x1 ,..., xr ; n1 ,..., nr)

= :
G # I(r, 1)

:
xr+1 ,..., xv

V (e)
1 (n1 ,..., nr ; G) V (i )

1 (G) L0(x1 ,..., xv ; G)
S(G)

= :
G # I(r, 1)

V (e)
1 (n1 ,..., nr ; G) V (i )

1 (G) K e(G)E(x1 ,..., xr ; G)
S(G)

(11)

where the internal and external renormalized vertex factors are

V (e)
1 (n1 ,..., nr ; G)= `

r

i=1

+(n(i )+ni ) (12)

and

V (i )
1 (G)= `

v

i=r+1

+(n(i )) (13)

Equation (7) requires a sum over all connected graphs, and therefore
it is impractical for the computation of +(n) at large orders of the LCE. We
introduce the renormalized moments q(n) (named self-fields and denoted by
Gn in ref. 9), defined by

q(n)= :
G # I

(1, 0)
n, in

:
x2 ,..., xv

V (i )
0 (G) L0(x1 ,..., xv ; G)

S(G)
(14)

where I (1, 0)
n, in is the set of 1-insertions with root of valence n. The following

equations hold:

q(n)= :
G # I

(1, 1)
n, in

:
x2 ,..., xv

V (i )
1 (G) L0(x1 ,..., xv ; G)

S(G)
(15)

where I (1, 1)
n, in =I (1, 0)

n, in & I(1, 1), and I (1, 1) is the set of 1-rooted 1-skeletons;

+(n)=+0(n)+ :
�

s=1

1
s !

:
�

l1=1

} } } :
�

ls=1

q(l1) } } } q(ls) +0(n+l1+ } } } +ls) (16)

Since q(2n&1)=0, and odd values of n and li do not contribute to
Eq. (16), q and + can now be computed recursively in parallel order by
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order in K, since, once Eq. (15) is expanded in powers of K and truncated,
the coefficient of the highest power of K in the l.h.s. depends only on lower-
order approximations of +.

6. EDGE-RENORMALIZED EXPANSION

A pair of distinct vertices i and j of a rooted graph G is called an
articulation pair if there exist vertices of G"i" j not connected to a root, or
if i and j are joined by more than one edge. A rooted graph is called
2-irreducible if it does not contain any articulation pair.

Any 1-irreducible r-rooted (r>2) graph G can be decomposed in a
unique way into a 2-irreducible r-rooted 2-skeleton S and a 1-irreducible
2-rooted 2-decoration for each edge (oriented in a canonical way, e.g., by
choosing i(l )< f (l )); G is reconstructed by replacing each edge with its
decoration, identifying the first and second decoration root with the initial
and final vertex of the edge respectively. An example is shown in Fig. 2.

We use a different definition for 2-rooted graphs, since the only 2-irre-
ducible 2-rooted graph is the bond graph (no internal vertices and only one
edge); the roots of all other 1-irreducible 2-rooted graphs are an articula-
tion pair. We call a 1-irreducible 2-rooted graph a 2-skeleton if it does not
contain any articulation pair except the pair consisting of the two roots. Any
1-irreducible 2-rooted graph can be decomposed in a unique way into a
2-rooted 2-skeleton S and a 1-irreducible 2-rooted 2-decoration for each
edge except edges connecting the roots, which are left undecorated.

The LCE can be reorganized by summing together all contributions
from graphs having the same 2-skeleton, incorporating all 2-decorations
into renormalized edges.

Fig. 2. Example of decomposition of a graph into its 2-skeleton and 2-decorations. Open
dots and roots, filled dots are internal vertices.
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We start by decomposing Eq. (11) for r>1 into

Wr(x1 ,..., xr ; n1 ,..., nr)= :
G # I

(r, 1)
n1 ,..., nr

:
xr+1 ,..., xv

V (i )
1 (G) L0(x1 ,..., xv ; G)

S(G)
(17)

Xr(x1 ,..., xr ; n1 ,..., nr)= :
s1 ,..., sr

_`
r

i=1

+(ni+si )& Wr(x1 ,..., xr ; s1 ,..., sr) (18)

where I (r, 1)
n1 ,..., nr

is the set of 1-irreducible r-rooted graphs with roots of
valence n1 ,..., nr . Wr enjoys the same symmetry properties of Xr . W1(x, n)
is undefined.

Wr can be computed by assigning an initial and a final valence il , f l

to each oriented edge of a 2-rooted graph; the valence il is incident with i(l )
and f l is incident with f (l ):

Wr(x1 ,..., xr ; n1 ,..., nr)

= :
G # I(r, 2)

:
xr+1 ,..., xv ; i1 ,..., ie , f1 ,..., fe

`
r

i=1

$(ni&&i (i1 ,..., ie , f1 ,..., fe ; G))

_
V (i )

2 (i1 ,..., ie , f1 ,..., fe ; G) L2(x1 ,..., xv ; i1 ,..., ie , f1 ,..., fe ; G)
S(G)

(19)

where I(r, 2) is the set of 2-irreducible r-rooted graphs, &i is the sum of all
the valences incident with the vertex i,

V (i )
2 (i1 ,..., ie , f1 ,..., fe ; G)= `

v

i=r+1

+(&i (i1 ,..., ie , f1 ,..., fe ; G)) (20)

and

L2(x1 ,..., xv ; i1 ,..., ie , f1 ,..., fe ; G)= `
e

l=1

W2(xi(l )&xf (l ) ; i l , f l ) (21)

For r=2 Eqs. (19) and (21) require a slight modification: we define
I(2, 2) as the set of 2-rooted 2-skeletons; for edges incident with the two
roots, we replace W2(x1&x2 ; i, f ) with K%(x1&x2) $i1 $f 1 .

The sum over graphs can be restricted to a subset of I(r, 2); we will
discuss here the case r=2; the next Section will be devoted to the case
r�3. Let us start by classifying 1-irreducible 2-rooted graphs into several
classes.

An internal vertex i of a 1-irreducible 2-rooted graph G is called a
nodal point if the roots of G"i are not connected. A 1-irreducible 2-rooted
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graph is nodal (also named articulated or separable in the literature) if it
contains one or more nodal points; otherwise it is non-nodal.

A 1-irreducible 2-rooted graph is simple if G"1"2 is connected, and 1 is
not adjacent to 2. By definition, all nodal graphs are simple. A 1-irreducible
2-rooted graph is a ladder graph if it is not simple and it is not the bond
graph.

A 1-irreducible 2-rooted graph is elementary if it is both simple and
non-nodal.

We have divided 1-irreducible 2-rooted graphs into four disjoint
classes: bond, nodal, ladder, and elementary graphs. Let us separate the
contributions to W2 according to the four classes:

W2(x; n1 , n2)=W bo
2 (x; n1 , n2)+W no

2 (x; n1 , n2)

+W la
2 (x; n1 , n2)+W el

2 (x; n1 , n2)

i.e., bond, nodal, ladder, and elementary contributions respectively.
The bond contribution is trivial. Nodal contributions can be factorized

into a product of non-nodal contributions:

W no
2 (x; n1 , n2)= :

x3; i1 , i2

W nn
2 (x3 ; n1 , i1) +(i1+i2) W nn

2 (x&x3 ; i2 , n2)

+ :
x3 , x4; i1 , i2 , i3 , i4

W nn
2 (x3 ; n1 , i1) +(i1+i2)

_W nn
2 (x4&x3 ; i2 , i3) +(i3+i4) W nn

2 (x&x4 ; i4 , n2)+ } } }

(22)

which can be written recursively as

W no
2 (x; n1 , n2)= :

x3; i1 , i2

W nn
2 (x3 ; n1 , i1) +(i1+i2) W2(x&x3 ; i2 , n2) (23)

Likewise, ladder contributions can be factorized into a product of non-
ladder contributions:

W la
2 (x; n1 , n2)= :

�

s=2

1
s !

:
i1 ,..., is , f1 ,..., fs

$ \n1& :
s

t=1

it +
_$ \n2& :

s

t=1

ft+ `
s

t=1

W nl
2 (x, it , ft) (24)

Elementary contributions can be computed by setting r=2 into
Eq. (19), and restricting the sum to I (2, 2)

el , the set of elementary 2-rooted
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2-skeletons. The sum can be further restricted to I (2, 2)
0, el , the set of unor-

dered elementary 2-rooted 2-skeletons, provided that we replace S(G) with
SE (G) and we symmetrize the result:

W el
2 (x; n1 , n2)

=
1
2

:
G # I

(2, 2)
0, el

:
x3 ,..., xv; i1 ,..., ie , f1 ,..., fe

`
2

l=1

$(n i&& i (i1 ,..., ie , f1 ,..., fe ; G))

_
V (i )

2 (i1 ,..., ie , f1 ,..., fe ; G) L2(x1 ,..., xv ; i1 ,..., ie , f1 ,..., fe ; G)
SE(G)

+n1 W n2 (25)

The last ingredient we need for a fully edge-renormalized expansion
are the renormalized vertices +(n); they can be computed by combining
Eq. (16) with

q(n1+n2)=
n1 ! n2 !

(n1+n2)!
(W no

2 (0; n1 , n2)+W el
2 (0; n1 , n2)) (26)

reflecting the fact that the contributions to q(n1+n2) in Eq. (15) can be
obtained from the contributions to W2(0; n1 , n2) in Eq. (17) by identifying
the roots of the 2-rooted graph, i.e., by suppressing the second root and
reattaching all the edges incident with it to the first root, provided that the
roots are not adjacent.

Expanding in powers of K Eqs. (23)�(26), and (16), we can compute
W el

2 (x; n1 , n2), W no
2 (x; n1 , n2), W la

2 (x; n1 , n2), q(n), and +(n) in parallel
order by order in K. The only step which involves a summation over
graphs is Eq. (25), where the sum only runs over I(2, 2)

0, el , a relatively small
set.

7. THREE-POINT AND HIGHER FUNCTIONS

A vertex (internal or external) i of a 1-irreducible r-rooted graph G is
called a nodal point if G"i is not connected. By definition of 1-irreducibility,
each connected component of G"i must contain at least one root. A 1-irre-
ducible r-rooted graph G is nodal if it contains one or more nodal points;
otherwise it is non-nodal.

In the rest of this section, we will assume that every graph is 2-irre-
ducible.

A nodal point j of a 2-irreducible r-rooted graph G is called a tree-
insertion point if at least one of the connected components of G" j is a tree
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Fig. 3. Decomposition of a 2-irreducible graph into a compact kernel and 2-irreducible tree
graphs.

graph. The order t of j is the number of roots of G contained in all tree
graph components of G" j, plus 1 if j itself is a root. A 2-irreducible
r-rooted graph is called compact if it contains no tree-insertion points.

Let us consider a 2-irreducible r-rooted graph G. We generate a com-
pact 2-irreducible graph G$, called the compact kernel of G, by removing all
the tree graphs attached to every tree-insertion point, and promoting all
internal tree-insertion points to root. G is obtained by attaching a
2-irreducible tree graph to each root of G$. If G$ is not a tree graph (and
therefore it has at least 3 roots), the decomposition is unique; otherwise, G

itself is a tree graph. An example is shown in Fig. 3.
By summing all contribution of 2-irreducible graphs with the same

compact kernel, we can write Wq as

Wq(x1 ,..., xq ; n1 ,..., nq)=W tr
q (x1 ,..., xq ; n1 ,..., nq)

+ :
partitions

r>2

:
y1 ,..., yr , i1 ,..., ir

W co
r ( y1 ,..., yr ; i1 ,..., ir)

_ `
r

l=1

Yul+1( yl , xil 1
,..., xilul

; il , nil 1
,..., nilul

) (27)

where W tr
q (x1 ,..., xq ; n1 ,..., nq) is the tree graph contribution to Wq ,

W co
r ( y1 ,..., yr ; i1 ,..., ir) is the compact graph contribution to Wr , and

Yt+1( y, x1 ,..., xt ; i, n1 ,..., nt)=:
j

+(i+ j ) W tr
t+1( y, x1 ,..., xt ; j, n1 ,..., nt)

+:
j

$( y&x1) $(n1&i& j )

_W tr
t (x1 ,..., xt ; j, n2 ,..., nt) (28)

Y2( y, x; i, n)=:
j

+(i+ j ) W tr
2 ( y, x; j, n)+$( y&x) $(n&i )
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(the first and second term correspond to an internal and external t-tree-
insertion point respectively); notice that W tr

2 =W2 . Equation (27) can be
combined with Eq. (10) to give

Gq(x1 ,..., xq)=G tr
q (x1 ,..., xq)+ :

partitions
r>2

:
y1 ,..., yr , i1 ,..., ir

W co
r ( y1 ,..., yr ; i1 ,..., ir)

_ `
r

l=1

Zul+1( y l , x il 1
,..., xilul

; il) (29)

where

Zt+1( y, x1 ,..., xt ; i )= :
partitions of [1,..., t]

:
s1 ,..., sr

Yr+1( y, xi11
,..., xir 1

; i, s1 ,..., sr)

_ `
r

l=1

+(sl+ul) $ul
(x il 1

,..., xilul
) (30)

Zt+1( y, x1 ,..., xt ; i ) is symmetric under permutations of x1 ,..., x t and lattice
symmetries, e.g., simultaneous translation of y and x1 ,..., xt .

These formulae can be written graphically, according to the rules
presented in Table I. A sum over all dummy coordinates y and all dummy

Table I. Graphical Rules. & Is the Sum of All the Valences Incident with the
Vertex. The Argument z i of Wnn

q Is the Coordinate x or y Associated with
the Symbol Placed at the Vertex i of the Polygon; the Argument y i of

Wco
q Is the Variable y of the Function Zq+1 Placed at the Vertex i

Symbol Comment Variables Factor

M internal vertex y +(&)
m unlabelled root x, n $(n&&)

m
q labelled root x1 ,..., xq +(q+&) $q(x1 ,..., xq)

g
q first root of Z x1 ,..., xq , n +(q+&+n&1) $q(x1 ,..., xq)

}
q root of G y, x1 ,..., xq Zq+1( y, x1 ,..., xq ; &)

mM x1 ,..., xq G tr
q (x1 ,..., xq)

q
���� i, f W2(x i(l )&xf (l ) ; i, f )

q-sided polygon W nn
q (z1 ,..., zq ; &1 ,..., &q)

q-sided polygon with a letter ``c'' W co
q ( y1 ,..., yq ; &1 ,..., &q)
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Fig. 4. Graphical representation of Eq. (29) for q=5.

valences i, f and a sum over all inequivalent permutation of external coor-
dinates x or coordinate-valence pairs x, n are understood. Notice that,
despite the graphical notation, all pairs of roots of W nn

q and W co
q are equiv-

alent.
Equation (29) can be expressed by writing all polygons with a letter

``c'' having 3 to q vertices, placing a crossed dot with a positive integer label
at each vertex in all inequivalent ways, the sum of the labels being q, and
adding the tree contribution. The case q=5 is shown in Fig. 4.

Gq and Zq can be computed by adding the contributions of all 2-irre-
ducible r-rooted tree graphs with roots labelled by positive integers with
sum q; for Zq , the first root must be drawn as a square. The case Z3 is
shown in Fig. 5.

The next step is to write an expression of W co
q in terms of W nn

r . For
q=3 we have simply W co

3 =W nn
3 . The case q=4 is shown in Fig. 6. For

larger values of q, the number of non-nodal contributions to W co
q grows

rapidly, and a systematic approach is needed.
Let us define for a (connected or non-connected) graph G and a vertex

i the graph G�i: let G* be the connected component of G containing i; if
G*"i is connected, set G�i=G; otherwise, for each connected component
Gk* of G*"i generate the graph G� k by adding a new vertex, internal or
external like i, and joining it to all the vertices adjacent to i in G*, by the
same number of edges; replace G* with the connected components G� k . The
edges and vertices of G�i are in one-to-one correspondence with the edges
and vertices of i, except for the new vertices which all correspond to i
(a nodal point of G). Notice that G�i�j=G�j�i.

Fig. 5. Contributions to Z3 .
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Fig. 6. Compact contributions to W co
4 and corresponding nodal skeletons.

Let G be a compact 2-irreducible r-rooted graph (r�3) with t nodal
points i1 ,..., it . Observe that all the connected components Gl of G� #
G�i1 �...�it are non-nodal. Generate a new graph T, the nodal skeleton of G,
in the following way: for each Gl with v�3, containing n roots corre-
sponding to non-nodal roots of G, write a root l of T with a label n�0;
for each node ik of G write an unlabelled vertex ik of T, internal or exter-
nal like ik ; join ik to all the labelled roots l such that Gl contain a vertex
corresponding to ik , and with all unlabelled vertices which are adjacent to
ik in G.

A nodal skeleton is a connected 1-irreducible tree graph, but it is not
in general 2-irreducible (it may contain 2-valent internal vertices). A nodal
skeleton enjoys the following properties: each 2-valent internal vertex is
adjacent to a labelled root; labelled roots are never adjacent; unlabelled
roots are at least 2-valent; m-valent roots with label n satisfy n+m�3.
Every nodal skeleton can be generated by adding labels to some of the
roots and by splicing 2-valent internal vertices into a 2-irreducible tree
graph.

Every 1-irreducible tree graph, with some roots carrying a non-
negative integer label, satisfying the above properties, is the nodal skeleton
of a set of q-rooted 2-irreducible compact graphs, with q equal to the sum
of the labels plus the number of unlabelled roots. The contribution of this
set to W co

q can be computed by replacing each m-valent root of T carrying
a label n with an (n+m)-sided polygon whose vertices are the m vertices
adjacent to the root and n new (unlabelled) roots, and applying the rules
of Table I.

An example of the construction of the nodal skeleton and its evalua-
tion is presented in Fig. 7. The set of all nodal skeletons contributing to
W co

5 is shown in Fig. 8; see also Fig. 6.
We could carry further the reduction of the set of graphs to be summed

over, e.g., by identifying ladder graphs along the lines of Section 6. This is
rather complicated for arbitrary r, and goes beyond the scope of the
present work. Moreover, the zero-momentum projection described below is
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Fig. 7. A compact graph, its non-nodal components, its nodal skeleton, and the contribution
to W co of the set of graphs sharing the nodal skeleton.

not applicable to the ladder graph reduction. Therefore we compute W nn
r

by restricting the sum of Eq. (19) to I (r, 2)
nn , the set of non-nodal 2-irre-

ducible r-rooted graphs.
The above considerations can be simplified considerably if we are only

interested in moments of the q-point functions, e.g.,

/q# :
x2 ,..., xq

Gq(x1 ,..., xq)
(31)

M (q)
2 # :

x2 ,..., xq

(x1&x2)2 Gq(x1 ,..., xq)

Fig. 8. Nodal skeletons contributing to W co
5 .
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Let us introduce the moments of Zq , W co
q and W nn

q :

`q(n)# :
x2 ,..., xq

Zq(x1 ,..., xq ; n)
(32)

|co
q (n1 ,..., nq)# :

x2 ,..., xq

W co
q (x1 ,..., xq ; n1 ,..., nq)

the corresponding definition for / tr
q and |nn

q (n1 ,..., nq), all independent
second moments, etc.

Equation (29) can be projected over zero momentum to give

/q=/ tr
q + :

q

r=3

:
u1� } } } �ur

u1+ } } } +ur=q

q!
>r

l=1 ul !
:

i1 ,..., ir

|co
r (i1 ,..., ir) `

r

l=1

`ul+1(il) (33)

The computation of `q , / tr
q , and |co

q is also easy; the graphical rules
can be immediately projected over zero momentum, suppressing all coor-
dinates x and y and removing all space delta functions; the only nontrivial
part is the counting of the number of inequivalent permutations of roots.

`q(n) can be computed by summing over all inequivalent 2-irreducible
1-ordered r-rooted tree graphs, with the roots labelled by positive integers
u1 ,..., ur with sum q. The number of inequivalent permutations of the roots
2,..., r is

(q&1)!
S(u1&1)! >r

l=2 ul!

where S is the symmetry factor of the labelled graph.
The computation of / tr

q (n) is very similar, but we sum over unordered
graphs, and the number of inequivalent permutations of the roots is

q!
S > l ul!

|co
q (n1 ,..., nq) can be computed by summing over all inequivalent unor-

dered r-rooted nodal skeletons, with p roots labelled by non-negative
integers u1 ,..., up with r& p+u1+ } } } +up=q, with a weight 1�S, where S
is the symmetry factor of the labelled graph, with unlabelled roots assigned
an arbitrary distinct label (e.g., &1).

Finally, we can compute |nn
q (n1 ,..., nq) by summing over unordered

non-nodal 2-irreducible q-rooted graphs, provided that we use the modified
symmetry factor and we symmetrize the result under permutation of the
valences.
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The computation of the second moment of the above quantities
proceeds along the same lines. The factor (xi&xj )

2 in Eq. (31) is dealt with
in the following way: the two roots are connected by a chain of terms with
a space structure of the form

:
xj , y1 ,..., yn

(xi&xj )
2 f1(xi& y1) f2( y1& y2) } } } fn+1( yn&xj )

(we have dropped the dependency on coordinates lying outside the branch
connecting i with j ). Let us write

(xi&xj )
2=(xi& y1)2+( y1& y2)2+ } } } +( yn&x j )

2+cross terms

The cross terms do not contribute to the sum, and the result is

f (2)
1 f (0)

2 } } } f (0)
n+1+ f (0)

1 f (2)
2 } } } f (0)

n+1+ } } } + f (0)
1 f (0)

2 } } } f (2)
n+1

where

f (0)
i =:

y

f i ( y), f (2)
i =:

y

y2 f i ( y)

Therefore we can compute the second moment by taking each contribution
to the zero-momentum quantity, promoting one of the zero-momentum
factors along the branch connecting the roots i and j to second moment,
and summing over all possible choices.

By dealing with moments, we avoid the need to store all the values
of Z, W co, and Wnn, which can rapidly exhaust all available memory. The
extension to higher moments is straightforward but cumbersome.

8. PROGRAMMING DETAILS

We wrote a set of computer programs to implement the automatic
evaluation of the edge-renormalized LCE on the simple cubic lattice (sc)
and on the body-centered cubic lattice (bcc) (3D); the same programs
evaluate the LCE on two different representations of the square lattice
(2D) and on the 1D lattice.

The computation of q-point functions is performed for a generic poten-
tial, keeping +0(2n) symbolic; each term of the series is a polynomial in
+0(2n) with rational coefficients. We also implemented the same computa-
tion for a specific potential; this requires much less memory and is some-
what faster (up to 300), but not enough to give up the flexibility of a
generic potential.
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To speed up search and insertion into ordered sets of data, graph sets
and polynomials in +0(2n) are implemented as AVL trees (height-balanced
binary trees) (cf. e.g., ref. 12, Chapter 6.2.3), using the ubiqx library.
Rational numbers and (potentially) large integers are handled by the GNU
multiprecision (gmp) library.

Given the complexity of the procedure, it is crucial to perform a
number of checks in order to flush out all algorithm and program errors.
In 1D our series are compared with exact results for the spin-1�2(13) and the
spin-1(14) Ising model; this is already a very stringent check, especially of
the graph sets (cf. ref. 4). In 2D, our results are compared with the series
for / and M2 for spin-1�2 published in ref. 3. In 3D, our results are com-
pared with the lower-order series already available, for / and M2 for
specific potentials in refs. 3, 4, and 2, and for /, M2 , and /q for a generic
potential in ref. 7. q(n) can be computed from different combinations of n1

and n2 in Eq. (26); their agreement is non-trivial. Finally, for the spin-1�2
Ising model on any lattice, the series for Gq , rewritten in terms of v=
tanh K, must have integer coefficients.

8.1. Graph Generation

A program generates the table of all unordered elementary 2-rooted
2-skeletons contributing to the desired order; the algorithm follows ref. 4.
Starting from the graph drawn in Fig. 9, we apply recursively the following
modified Heap rules:(15)

(a) join any two distinct vertices by a new edge, provided the two
vertices are not already adjacent;

(b) insert a new internal vertex on any edge and join it to any vertex,
excluding the edge extrema, by a new edge;

(c) insert two new internal vertices on any two distinct edges, and
join them by a new edge;

(d) do not join the roots by a new edge.

The modifications to the original Heap rules (a), (b), and (c), marked
in italics, prevent the generation of 2-reducible graphs. Rule (d) prevents
the generation of ladder graphs.

Fig. 9. The simplest elementary 2-rooted 2-skeleton.
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The reduction of graphs to canonical form is performed using a
generalization of the algorithm of ref. 4. Graphs are stored in a compact
form similar to the one of ref. 4.

To reduce the proliferation of graphs at higher orders, it is extremely
important to know the order (``strict bound'') os at which a given graph
will enter in the expansion (it is not trivially e, since we require even
valence of all internal vertices, and, being interested in bipartite lattices,
even length of all loops).

We must also keep in mind that some graphs don't contribute at the
desired order, but graphs generated from them might contribute. We define
the ``Heap bound'' oH(G) as the minimum of os on the set of graphs includ-
ing G and all graphs generated from it. We also define the two bounds for
(G, '), i.e., the minimal order when the vertex i is forced to be embedded
in a lattice site of parity '(i ).

We apply the modified Heap rules to the graph G in the following
way: assign a parity label '(i ) to each vertex, in all the ways compatible
with the Heap bound; apply the modified Heap rules assigning all possible
parity labels to the new vertices; discard immediately the generated graph-
parity pairs not satisfying the Heap bound; discard vertex parity informa-
tion and store the generated graphs not isomorphic to previously generated
graphs. Finally, save into a file only the graphs satisfying the strict bound.

The generation of the elementary 2-rooted 2-skeletons contributing to
the 25th order required 41 hours of computation on one CPU of a Compaq
ES-40, and ca. 300 Mbytes of RAM. The number of inequivalent elemen-
tary 2-skeletons for each order of os is reported in Table II.

A similar program generates all unordered non-nodal 2-irreducible
r-rooted graphs for r�3. The table is initialized by applying rules (a) and (b)
recursively, starting from each 2-irreducible r-rooted tree graph, until the
result is non-nodal. Rules (a), (b), and (c) are then applied recursively. The
number of inequivalent non-nodal 2-irreducible r-rooted graphs for each
order of os is reported in Table II.

We remark that these graph tables can be used for the LCE of any
spin model with , � &, symmetry on a bipartite lattice in any dimension.

The generation of all the required families of tree graphs is straight-
forward.

8.2. Computation of the q-Point Functions

A separate program reads the table of elementary 2-rooted 2-skeletons
and computes all components of W2 .

The evaluation of + and of bond, nodal, and ladder contribution to
W2 is a straightforward application of the formulae of Section 6.
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Table II. Number of Inequivalent Unordered Elementary 2-Rooted
2-Skeletons (r=2), or Unordered Non-Nodal 2-Irreducible r-Rooted Graphs

(r>2), for Each Order of the Strict Bound os . The Number of Graphs
Satisfying the Heap Bound Is Typically 20� to 30� Higher. No Graph in Any

of These Sets Has a Bound Lower than 4

os r=2 r=3 r=4 r=5 r=6 r=7 r=8

4 0 1 1 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 1 2 1 0 0
7 0 1 1 1 1 0 0
8 1 3 5 4 4 2 1
9 0 2 4 6 6 5 2

10 3 7 19 26 27 22 12
11 0 9 23 47 63 48 33
12 13 46 111 175 229 228 159
13 6 54 168 378 603 661 575
14 59 263 737 1436 2224 2691 2465
15 29 367 1364 3473 6404 8694 9216
16 367 1855 5824 13190 23766 34106 38239
17 197 2898 12088 34726 72900 116210 146284
18 2589 14937 51801 133739 275031
19 1547 25332 118225 375859 884317
20 21682 135325 514319
21 13933 245306 1251818
22 199865
23 139610
24 2026682
25 1516576

The evaluation of elementary contribution dominates the computation
time, and must be optimized as much as possible. Assume that all lower-
order contributions to W2 have been computed. For each unordered
elementary 2-skeleton G with os not larger than the desired order, all
inequivalent assignations G, (n, l ) of edge valence parity n and length
parity l compatible with the desired order, with even length of all loops,
and with even valence of all internal vertices, are generated. We have
implemented two different algorithms for the computation of the contribu-
tion of G, (n, l ) to the two-point function.

The first algorithm is essentially the one used by Nickel and Rehr in
ref. 4: all inequivalent 1-irreducible 2-rooted graphs with a 2-skeleton com-
patible with G, (n, l ) are generated, and their contributions are computed
according to Eq. (11). In the second algorithm, the contribution is com-
puted according to Eq. (25), and 1-irreducible graphs are not needed. The
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first algorithm is more efficient for 2-skeletons with large os , while the
second algorithm is more efficient for small os ; for each value of os we
select the algorithm which is (presumably) more efficient. On the sc lattice,
the speed-up obtained over the use of either algorithm for all skeletons
grows with the order, and is about a factor of 4 at order 23. On the bcc
lattice, the first algorithm is very efficient, since the embedding number fac-
torizes into a product of 1-dimensional embedding numbers;(4) we still use
the second algorithm for the simplest 2-skeletons (os�10), since the com-
putation of the corresponding 1-irreducible 2-rooted graphs contributing to
orders higher than 21 is extremely time- and memory-consuming.

Keeping in RAM all components of W2 for a generic potential would be
problematic. Most of these components are needed only to compute nodal
and ladder contributions, and can be kept on disk; keeping in RAM just the
components needed to compute elementary contribution is manageable.

The computation of the 25th-order LCE for the two-point function on
the bcc lattice required ca. 400 hours of computation, and ca. 700 Mbytes
of RAM.

A similar program reads the table of non-nodal 2-irreducible r-rooted
graphs and the components of W2 , and computes |nn

q . The computation of
/q is then straightforward. We computed /4 , /6 , and /8 to 21st, 19th, and
17th order respectively on the bcc lattice.

The computation of the same quantities on the sc lattice is much
slower (but does not requires more RAM); so far, we obtained W2 to 23th
order, with an effort not much smaller than the 25th order on the bcc lat-
tice. The computation of W2 and /q to the same orders as on the bcc lattice
is in progress, but it will require a non-trivial amount of time.

9. SELECTED RESULTS

All high-temperature series computed in the present work are available
for the most general potential, in the form of polynomials in the bare ver-
tices +0(2n). The general results are extremely lengthy, and are only useful
for further computer processing.

We present here a selection of high-temperature series for the spin-1�2
Ising model, i.e., for

f (,)= 1
2 ($(,+1)+$(,&1))

For sake of compactness, all the series are written in terms of v=tanh K.
Series for other specific potentials are available upon request from the
author.
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Although we computed all components of G2(x, y), we report here
only /#/2 and M2#M (2)

2 (cf. Eq. (31)). For the q-point functions, we only
computed /q .

On the bcc lattice, we obtained

/=1+8v+56v2+392v3+2648v4+17864v5+118760v6+789032v7

+5201048v8+34268104v9+224679864v10+1472595144v11

+9619740648v12+62823141192v13+409297617672v14

+2665987056200v15+17333875251192v16

+112680746646856v17+731466943653464v18+4747546469665832v19

+30779106675700312v20+199518218638233896v21

+1292141318087690824v22+8367300424426139624v23

+54141252229349325768v24

+350288350314921653160v25+O(v26) (34)

M2=8v+128v2+1416v3+13568v4+119240v5+992768v6+7948840v7

+61865216v8+470875848v9+3521954816v10+25965652936v11

+189180221184v12+1364489291848v13+9757802417152v14

+69262083278152v15+488463065172736v16

+3425131086090312v17+23896020585393152v18

+165958239005454632v19+1147904794262960384v20

+7910579661767454248v21+54332551216709931904v22

+372033905161237212392v23+2540342425838560175616v24

+17301457207110720278440v25+O(v26) (35)

&/4=2+64v+1168v2+16576v3+201232v4+2204608v5+22411504v6

+215447872v7+1981980688v8+17602809920v9+151865668752v10

+1278888344256v11+10550227820400v12+85510907958720v13

+682500568307184v14+5374496030148928v15

+41821018545214608v16+321992795063663936v17

+2455641803116052752v18+18567879503614668736v19

+139310655514229882000v20+1037854026688655887552v21

+O(v22) (36)
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/6=16+1088v+36416v2+853952v3+15974528v4+255491264v5

+3638767040v6+47395195712v7+574950589568v8

+6581949043264v9+71803170318144v10

+752047497945024v11+7606707093034368v12

+74649010982738112v13+713458387977120192v14

+6661638582474716480v15+60923519621981242752v16

+546923327751320201536v17+4828463182433394315584v18

+41987611565592990702272v19+O(v20) (37)

&/8=272+31744v+1673728v2+58110976v3+1538207872v4

+33584739328v5+634387677184v6+10699575811072v7

+164723097021568v8+2352360935459840v9

+31540880634427392v10+400802365468148736v11

+4862781935250449280v12+56665753776838026240v13

+637305912177206767104v14+6945658883867865975808v15

+73600395257678784586368v16+760476823195422275111936v17

+O(v18) (38)

On the sc lattice, we obtained

/=1+6v+30v2+150v3+726v4+3510v5+16710v6+79494v7+375174v8

+1769686v9+8306862v10+38975286v11+182265822v12

+852063558v13+3973784886v14+18527532310v15

+86228667894v16+401225368086v17+1864308847838v18

+8660961643254v19+40190947325670v20+186475398518726v21

+864404776466406v22+4006394107568934v23+O(v24) (39)
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M2=6v+72v2+582v3+4032v4+25542v5+153000v6+880422v7

+4920576v8+26879670v9+144230088v10+762587910v11

+3983525952v12+20595680694v13+105558845736v14

+536926539990v15+2713148048256v16+13630071574614v17

+68121779384520v18+338895833104998v19

+1678998083744448v20+8287136476787862v21

+40764741656730408v22+199901334823355526v23

+O(v24) (40)
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